
C++ ARRAYS AND 
POINTERS

Problem Solving with Computers-I

C++ Arrays  
• List of elements
• All elements have the same data type
• The elements are located adjacent to each other in memory
• Like all variables in C++, you must declare an array before using it

Accessing elements of an array

int scores[]={20,10,50}; // declare and initialize
• scores is the starting memory location of the array

• also called the base address
• Base address (scores)cannot be modified

• Access array elements using their index
• Indices start at 0

• scores[0]: 20
• scores[1]: 10
• scores[2]: 50
• scores[3]: out of bound array access, undefined behavior

Iterating through an array

int scores[]={20,10,50}; // declare an initialize

To iterate use:
* regular for loops
* Or range based for loop (C++ 11 feature)

scores 0 1 2

Modifying the array

int scores[]={20,10,50};
scores = scores + 10;
for(int i=0; i<3; i++){
 cout<<scores[i]<<“\t”;
}

What is the output of this code?

A. 30 20 60

B. 20 10 50

C. Compiler error

 Tracing code involving arrays

int arr[]={10,20,30};
int tmp = arr[0];
arr[0] = arr[2];

arr[2] = tmp;

arr 0 1 2
10 20 30

Choose the resulting array after
the code is executed

20 10 30

30 20 10

A.

B.

C.

D. None of the above

arr 0 1 2

arr 0 1 2

arr 0 1 2

Most common array pitfall- out of bound access

int scores[]={20,10,50}; // declare and initialize

for(int i=0; i<=3; i++)

 scores[i] = scores[i]+10;

scores[0] scores[1] scores[2]

Passing arrays to functions

int main(){
int scores[]={10, 20, 30, 40, 50};

 foo(scores);
}
double foo(int sc[]){
 cout<<sc;
 return
}

scores 10 20 30 40 50

What is the output?

A. 10
B. 10 20 30 40 50
C. 0x2000
D. None of the above

0x2000

char arrays, C-strings

• How are ordinary arrays of characters and C-strings similar and how are
they dissimilar?

What is the output of the code?

A. Mark Jill

B. Mark Mark

C. Art Mark

D. Compiler error

E. Run-time error

char s1[] = "Mark";
char s2[] = "Jill";
for (int i = 0; i <= 4; i++)
 s2[i] = s1[i];
if (s1 == s2) s1 = "Art";
cout<<s1<<" "<<s2<<endl;

int a = 5;
int &b = a;
int *pt1 = &a;

What are three ways
to change the value of
‘a’ to 42?

11

Pointers and references: Draw the diagram for this code

▪ ar is like a pointer to the first element

▪ ar[0] is the same as *ar

▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers

Pointer Arithmetic

int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Draw the array ar after the above code is executed

int ar[]={20, 30, 50, 80, 90};

Pointer Arithmetic

How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
 A: 1
 B: 2
 C: 3
 D: 4
 E: 5

int ar[]={20, 30, 50, 80, 90};

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in

undefined behavior.

• On most occasions your program will crash

• Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers
18

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to

Pointer Arithmetic
▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Next time
• Structs
• Arrays of structs

