
TESTING
AUTOMATING COMPILATION

Problem Solving with Computers-I

Lab02 practice & TDD

s = drawTriangle(5);
cout<<s;

 *

Write a function that RETURNS a string representing

an isosceles triangle with a given width.

We will use this example to introduce test driven

development

Make and makefiles
• The unix make program automates the compilation process as specified in a

Makefile
• Specifies how the different pieces of a program in different files fit together to make

a complete program
• In the makefile you provide a recipe for compilation
• When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile
• Comments start with a #
• Definitions typically are a variable in all caps

followed by an equals sign and a string, such as:

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o
#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo
• Basics of code compilation in C++ (review)
• Makefiles (used to automate compilation of medium to large projects) consisting of

many files
• We will start by using a makefile to compile just a single program
• Extend to the case where your program is split between multiple files
• Understand what each of the following are and how they are used in program

compilation
• Header file (.h)
• Source file (.cpp)
• Object file (.o)
• Executable
• Makefile
• Compile-time errors
• Link-time errors

Next time
• Data Representation

