
FUNCTIONS, LOOPS
Problem Solving with Computers-I

Functions: Basic abstraction in programs
• Keep programs DRY !
• Three steps when using functions

1. DECLARE: void drawSquare(int y);

2. DEFINE: Write the actual code inside the function

3. CALL: drawSquare(20);

You must always declare/define functions before calling them.
Demo the use of functions

Pass by value
 #include <iostream>
 using namespace std;

 void bar(int x){
 x = x+5;

 }

 int main(){
 int y = 0
 bar(y);
 cout<<y;
 return 0;
 }

What is printed by this
code?

A. 0
B. 5
C. Something else

O

While loops
A while loop is used to repeat code while some condition is true

while(BOOLEAN_EXPRESSION)
 //Code
}
Check if the BOOLEAN_EXPRESSION is true.

* If true, the statements in loop will execute.
* at the end of the loop, go back to 1.

* If false, the statements in the loop will not execute.
* the program execution after the loop continues.

do-while loops

A while loop is used to repeat code until some condition is no longer true

do{
 // Code
 // This code is executed at least once
}while(BOOLEAN_EXPRESSION);
1. Execute the code in the loop
2. Check if BOOLEAN_EXPRESSION is true.

* If true, then go back to 1.
* If false, then exit the loop and resume program

execution.

C++ for loops
For loop is used to repeat code (usually a fixed number of times)

General syntax of a for loop:

for (INITIALIZATION; BOOLEAN_EXPRESSION; UPDATE) {
 // code
 // ...
}
1. Execute the INITIALIZATION statement.
2. Check if BOOLEAN_EXPRESSION is true.

* if true, execute code in the loop.
* execute UPDATE statement.
* Go back to 2.

* if false, do not execute code in the loop.
* exit the loop and resume program execution.

Continue and break
• continue;

• can be used to stop the current iteration of a loop,
• perform the UPDATE statement if necessary, re-check the BOOLEAN_EXPRESSION,

and
• continue with the next iteration of the loop.

* break; can be used to break out of the current loop and continue execution after the end
of the loop.

for (int i = 0; i < 10; i++) {
if (i == 4)

continue;
if (i == 7)

break;
cout << “i = “ << i << endl;

}

The accumulator pattern 
Write a function that takes a parameter n and prints the
sum of the series: 
1+ 1/2+ 1/3+ ….1/n

Write another function that returns the sum of the
series

Formatting output to terminal
See pages 91 and 190 of textbook
int i =10;
double j = 1/static_cast<double>(i);
cout.setf(ios::fixed); // Using a fixed point representation
cout.setf(ios::showpoint); //Show the decimal point
cout.precision(3);
cout<<j;

What is printed by the above code?
A. 0
B. 0.1
C. 0.10
D. 0.100
E. None of the above

Nested for loops – ASCII art!

drawSquare(5);

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

Write a function that prints a square of a given width

Draw a triangle

drawTriangle(5);

*
* *
* * *
* * * *
* * * * *

Which line of the drawSquare code

(show on the right) would you modify

to draw a right angled triangle

 6 for(int i = 0; i < n; i++){ //A
 7 for(int j=0; j < n; j++){ //B
 8 cout<<"* "; //C
 9 }
 10 cout<<endl; //D
 11 }
 12 cout<<endl; //E
 13

Infinite loops
for(int y=0;y<10;y--)
 cout<<“Print forever\n";
int y=0;
for(;;y++)
 cout<<“Print forever\n";
int y=0;
for(;y<10;);
 y++;
int y=0;
while(y<10)
 cout<<“Print forever\n";
int y=0;
while(y=2)
 y++;

Next time
• Automating the compilation process with Makefiles
• Intro to lab02

