
LINKED LISTS & DYNAMIC
MEMORY ERRORS

Problem Solving with Computers-I

Creating a small list
2

• Define an empty list

• Add a node to the list with data = 10

struct Node {
int data;
Node* next;

};

struct LinkedList {
Node* head;
Node* tail;

};
e

Insert into a non empty list

i oD
we

Inserting a node at the head of a linked list
void insert(LinkedList& h, int value) ;

Iterating through the list
/* Find the number of elements in the list */

int count(LinkedList& list);

head tail

list

Deleting the list
/* Free all the memory that was created on the heap*/

void freeList(LinkedList& list);

head tail

list

Deleting a node from the linked list

x4 f
pref IFL
preve next Curr next

delete curry
11 Need a special ease to delete the Iste

Double Linked Lists
7

Array List1 2 3

Boz
FIFE

Implementing a double-linked list
8

• Define a node in a double linked list
• Write functions to

• insert a node to the head/tail of the linked list
• Print all the elements of the list
• Delete a node with a given value
• Free the list

Dangling pointers and memory leaks

–Dangling pointer: Pointer points to a memory location that no longer exists
–Memory leaks (tardy free):

• Heap memory not deallocated before the end of program

• Heap memory that can no longer be accessed

int t p k p is a dangling pointer
in 9 0 Hq is not dangling

11Problem with dangling pointers
is that dereferencing their

car

11 cause a kgfault
contCC p 11Possible Segfault

If 1nshad thepointer was initialized
to 0 we could do a

null check before rdeereferencing

Dynamic memory pitfalls

Example

void foo(){
int* p = new int;

}

Memory leaks (tardy free):
Heap memory not deallocated before the end of program
Heap memory that can no longer be accessed

Null check

I n
only dereferences

q if its

not null

Memory errors can cause your program to crash
• Segmentation faults: Program crashes because it attempted to

access a memory location that either doesn’t exist or doesn’t have
permission to access

• Examples of code that results in undefined behavior and potential
segmentation fault

int arr[] = {50, 60, 70};

for(int i=0; i<=3; i++){
cout<<arr[i]<<endl;

}

int x = 10;
int* p;
cout<<*p<<endl;

Detecting memory errors
• Valgrind is a tool that reports errors related to dynamic memory

allocation, access and deletion

• Run valgrind on your program using the following command:

valgrind --leak-check=full ./myprog

Next time
• Recursion

