
C++ MEMORY MODEL
DYNAMIC MEMORY
HEAP VS STACK

Problem Solving with Computers-I

Hi Freq Af

Announcements
Please fill out the mid-quarter evaluations for:

(1) TAs: http://bit.ly/CS16-Midquarter-TA-Evaluation

(2) Course and instructor:
http://bit.ly/CS16-Midquarter-Instructor-and-Course-Evaluation

Link to both is posted on Piazza!

The case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){

int y=0, *p=nullptr, z=0;
y = getInt();
p = getAddressOfInt();
z = *p;

cout<<y<<", "<<z<<", "<<*p<<endl;
}

What is the output?

A. 5, 0, 10
B. 5, 10, 10
C. Something else

0 2

NDA
a 0 o TG P

o

5 10 To

C++ Memory Model: Stack
• Stack: Segment of memory

managed automatically using a
Last in First Out (LIFO) principle

• Think of it like a stack of books!

b g g l

dooUf
Executable

Globe
roiofoo.fr nSaio

Jbar
3

y bare

17 EE
O

C++ Memory Model: Heap
• Heap: Segment of memory

managed by the programmer

• Data created on the heap stays
there

– FOREVER or

– until the programmer explicitly
deletes it

s

Managed by
the program
not automatic

Creating data on the Heap: new

To allocate memory on the heap use the new operator

int x n is on the stack

in f p's Ubyles

f
win

Dagan
p 2
4 same as

fJpnewi
P

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

int p new int C2

delete P Hfrees the
heapmemory

11 p is still pointing
to 2

fsiaeg.LI
p 5 11Program will crash

11Cannot dereference panymore

void tool S
y

int A p Dfw int

delete p

stack 1 Heap

PD
1 delete p

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the heap

Student* n = new Student;

//creates a new Student on the heap

delete p; //Frees the integer

delete n; //Frees the Student

delete n's crash double free error

Solve the case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){

int y=0, *p=nullptr, z=0;
y = getInt();
p = getAddressOfInt();
z = *p;
cout<<y<<", "<<z<<", "<<*p<<endl;

}

Change the code so that *p
does not disappear

Desired output:
5, 10, 10

Heap vs. stack
1 #include <iostream>
2 using namespace std;
3
4 int* createAnIntArray(int len){
5
6 int arr[len];
7 return arr;
8
9 }

Does the above function correctly return an array of integers?
A. Yes
B. No

Stade
o 1

arrgDl

int a p Create An Int Array 2 p

Where are we going? Data Structures!

Arrays

15 20 30

array
int ar 53

Where are we going? Data structures!!

(CS24/32)

15 20 30 Arrays

It all
boils
down to
1’s and 0’s

Linked Lists
13

Linked List

Array List1 2 3

Accessing elements of a linked list

Assume the linked list has already been created, what do the following
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
int data;
Node *next;

};

Create a small list – use only the stack
15

• Define an empty list

• Add a node to the list with data = 10

struct Node {
int data;
Node *next;

};

Heap vs. stack

Node* createSmallLinkedList(int x, int y){

Node* head = NULL;
Node n1 ={x, NULL};
Node n2 ={y, NULL};
head = &n1;
n1->next = &n2;
return head;

}

Does the above function correctly create a two-node linked list?
A. Yes
B. No

Pointer pitfalls and memory errors
• Segmentation faults: Program crashes because it attempted to

access a memory location that either doesn’t exist or doesn’t have
permission to access

• Examples of code that results in undefined behavior and potential
segmentation fault

int arr[] = {50, 60, 70};

for(int i=0; i<=3; i++){
cout<<arr[i]<<endl;

}

int x = 10;
int* p;
cout<<*p<<endl;

Dynamic memory pitfalls

Dangling pointer: Pointer points to a memory location that no longer exists

int* f1(int num){
int* mem1 =new int[num];
return(mem1);

}

A. f1
B. f2
C. Both
D. Neither

int* f2(int num){
int mem2[num];
return(mem2);

}

Which of the following functions returns a dangling pointer?

Dynamic memory pitfalls

Example

void foo(){
int* p = new int;

}

Memory leaks (tardy free):
Heap memory not deallocated before the end of program
Heap memory that can no longer be accessed

Next time
• More Linked Lists

