AUTOMATING COMPILATION
C++ MEMORY MODEL

Problem Solving with Computers-I C
lm, ' GitHub
ae 4'1095:;:35cdi

1l

Pointer Diagrams (Review) ‘; (int +)

int anf]={20, 30, 50, 80, 90}; (iny)
int *p = arr; #

p =64 1; 0x9000 4 a* Slaec} (int) &P (int)
*p =.*p + 1;

ih#ag= &P\, UXAe0Y + A2 Sizeq Cinkt)
Draw the array ar after the above code is executed
OXB 0o 09X 90)

void IncrementPtr(int *p){
pt+; -

int masn() 3

int arr[3] = {50, 60, 70};

int *q = arr; OKpoe
IncrementPtr ;

retw/n 0, arr

9 (2
Which of the following is true after IncrementPtr (q) is called
in the above code:

A. ‘q’ points to the next element in the array with value 60

‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr () ,so that ‘q’ points to 60
when the following code executes?

void IncrementPtr(int **p)/{
o= [J

pt+; q:’?'{—l
}

int arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr (&q);

A.p= p+1; cfbdglin ts
. &p = &p + 1; (nvelod €eKpren R T #p
G
. p= &p+l;

P - @ +p =)

The compilation process

Source code Compiler Executable Run Time
hello.cpp - Hardware
Executable:

Program in machine code
+Data in binary

Source code:

Text file stored on 1000110001100010000000000000000

computers hard disk or 1000110011110010000000000000100
1010110011110010000000000000000

m n r
some secondary storage 1010110001100010000000000000100

g++ is composed of a number of smaller programs

+ Code written by others (libraries) can be included

- Id (linkage editor) merges one or more object files with the relevant
libraries to produce a single executable

hello.cpp

g++

gteps INn gcc

- Ask compiler to show temporary files:

$ g++ —S hello.cpp Well descuss Fhese

$ g++ —c hello.o \ader wWhun M“‘g

$ g++ —o hello hello.cpp abswk W«u-f

$ g++ functions.o main.o —o myhello PYOZKQM Yot Erne
od QAN

-

hello.cpp

g++

Make and makefiles

* The unix make program automates the compilation process as specified in a
Makefile

- Specifies how the different pieces of a program in different files fit together to make
a complete program

* In the makefile you provide a recipe for compilation
* When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile

- Comments start with a # CXX=g++

- Definitions typically are a variable in all caps CXXFLAGS=-Wall

followed by an equals sign and a string, such as: _
BINARIES=projl

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o

#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo

- Basics of code compilation in C++ (review)

- Makefiles (used to automate compilation of medium to large projects) consisting of
many files

- We will start by using a makefile to compile just a single program
- Extend to the case where your program is split between multiple files

- Understand what each of the following are and how they are used in program
compilation

- Header file (.h)

+ Source file (.cpp)

* Object file (.0)

+ Executable

* Makefile

+ Compile-time errors
+ Link-time errors

Dynamic Memory
& Heap vs Stack

The case of the disappearing data!

int getlnt(;{ What is the output?
return x; /&n 5"\ ILM‘
— 7N A. 5,0, 10

return &x; Something else

}
int* getAddressOfInt(){ 5,10, 10
E lint x=10; //‘\L(S&h’co-‘" “@

} ==

)

int main() {
int y=0, *p= nullptr, z=0; 2 E
y getInt();

p getAddressOfInt();

2 *Pi

[1] n %
cout<<y<<"’, <<z<<", <<*p<<e dl; u
} 5 o -

C++ Memory Model: Stack
Address 0x00000000

« Stack: Segment of memory
managed automatically using a
Last in First Out (LIFO) principle

Text (R/0)

* Think of 1t like a stack of books! Global Data

«—— Address OxFFFFFFFF

C++ Memory Model

« Heap: Segment of memory
managed by the programmer

» Data created on the heap stays
there

— FOREVER or

— until the programmer explicitly
deletes it

: Heap

Address 0x00000000
Text (R/0)

Global Data

Heap

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Dynamic memory management = Managing data on the heap
int* p= new int; //creates a new integer on the
heap

SuperHero* n = new SuperHero;

//creates a new Student on the

heap
delete p; //Frees the integer

delete n; //Frees the Student

Solve the case of the disappearing data!

int getInt()({ Change the code so that *p
int x=5; :
return x; does not disappear
}
int* getAddressOfInt(){ Desired output:
int x=10;
return &x; 5’10’10
}

int main(){
int y=0, *p=nullptr, z=0;

y = getInt();
p = getAddressOfInt();
z = *p;

cout<<y<<", "<<z<<", "<<*p<<endl;

e
Heap vs. stack

1 #include <iostream>

2 using namespace std;

3

4 int*x createAnIntArray(int len){

int arr[lenl];
return arr;

O 00 JdO U

}

Does the above function correctly return an array of integers?
A. Yes
B. No

Next time

* Dynamic Memory Pitfalls
- Linked Lists

