
AUTOMATING COMPILATION
C++ MEMORY MODEL

Problem Solving with Computers-I

Pointer Diagrams (Review)

int *p = arr;
p = p + 1;
*p = *p + 1;

Draw the array ar after the above code is executed

int ar[]={20, 30, 50, 80, 90}; P int
r

p
int

pointer
int o ooo as sizeof int p int

nt sq Ip 11 0 9000 I sizeof Cintra

0 8004
ar048tw X09

0 f 2 3 4

ofaoootDI.gr

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

PYE
int mainC

return o
ah

oxoooo IJgj
O l 2

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?
void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

9 9 1

a
s

O sap

p a p t I

The compilation process
Source code

Source code:
Text file stored on
computers hard disk or
some secondary storage

Compiler

Hardware

Executable:
Program in machine code
+Data in binary

1000110001100010000000000000000
1000110011110010000000000000100
1010110011110010000000000000000
1010110001100010000000000000100

Run Time

hello.cpp g++ a.out

Executable

g++ is composed of a number of smaller programs
• Code written by others (libraries) can be included
• ld (linkage editor) merges one or more object files with the relevant

libraries to produce a single executable

hello.cpp
a.out

6

g++

hello.s
as

cpp

cc1

ld

Library files
e.g.math.o: the
math library

hello.o

Steps in gcc
• Ask compiler to show temporary files:
$ g++ –S hello.cpp
$ g++ –c hello.o
$ g++ –o hello hello.cpp
$ g++ functions.o main.o –o myhello

hello.cpp a.out

g++
hello.s

as

cpp

cc1

ldhello.o

Make and makefiles
• The unix make program automates the compilation process as specified in a

Makefile
• Specifies how the different pieces of a program in different files fit together to make

a complete program
• In the makefile you provide a recipe for compilation
• When you run make it will use that recipe to compile the program

$ make
g++ testShapes.o shapes.o tdd.o -o testShapes

Specifying a recipe in the makefile
• Comments start with a #
• Definitions typically are a variable in all caps

followed by an equals sign and a string, such as:

testShapes is the target - it is what we want to produce
To produce the executable testShapes we need all the .o files
Everything to the right of ":" is a dependency for testShapes

testShapes: testShapes.o shapes.o tdd.o
#The recipe for producing the target (testshapes) is below
g++ testShapes.o shapes.o tdd.o -o testShapes

Demo
• Basics of code compilation in C++ (review)
• Makefiles (used to automate compilation of medium to large projects) consisting of

many files
• We will start by using a makefile to compile just a single program
• Extend to the case where your program is split between multiple files
• Understand what each of the following are and how they are used in program

compilation
• Header file (.h)
• Source file (.cpp)
• Object file (.o)
• Executable
• Makefile
• Compile-time errors
• Link-time errors

Dynamic Memory
& Heap vs Stack

The case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){
 int y=0, *p=nullptr, z=0;
 y = getInt();
 p = getAddressOfInt();
 z = *p;
 cout<<y<<", "<<z<<", "<<*p<<endl;
}

What is the output?

A. 5, 0, 10
B. 5, 10, 10
C. Something else

o
main P

C

C++ Memory Model: Stack
• Stack: Segment of memory

managed automatically using a
Last in First Out (LIFO) principle

• Think of it like a stack of books!

1

C++ Memory Model: Heap
• Heap: Segment of memory

managed by the programmer

• Data created on the heap stays
there

– FOREVER or

– until the programmer explicitly
deletes it

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the
heap

SuperHero* n = new SuperHero;

 //creates a new Student on the
heap

delete p; //Frees the integer

delete n; //Frees the Student

Solve the case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){
 int y=0, *p=nullptr, z=0;
 y = getInt();
 p = getAddressOfInt();
 z = *p;
 cout<<y<<", "<<z<<", "<<*p<<endl;
}

Change the code so that *p
does not disappear

Desired output:
5, 10, 10

Heap vs. stack
 1 #include <iostream>
 2 using namespace std;
 3
 4 int* createAnIntArray(int len){
 5
 6 int arr[len];
 7 return arr;
 8
 9 }

Does the above function correctly return an array of integers?
A. Yes
B. No

Next time
• Dynamic Memory Pitfalls
• Linked Lists

