MORE FUNCTIONS MAKEFILES

Problem Solving with Computers-I

Approximate Equality

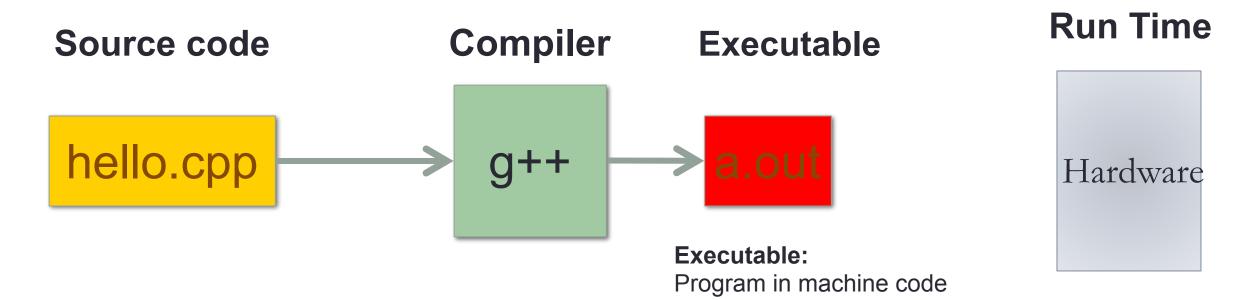
What is the correct way to test for approximate equality?

(a)
$$|x - y| < 0.001$$

(b)
$$|y - x| \le 0.001$$

(c)
$$|x + y| < |x + y| + 0.001$$

- (d) A and B
 - (e) A, B, and C

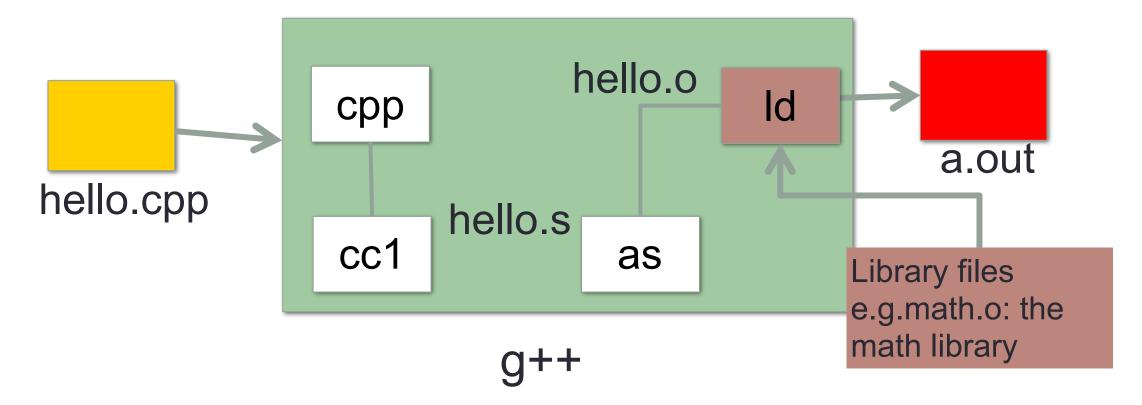

Writing code that works

Write a function that RETURNS a string representing an isosceles triangle with a given width

```
s = drawTriangle(5);
cout<<s;

*
****</pre>
```

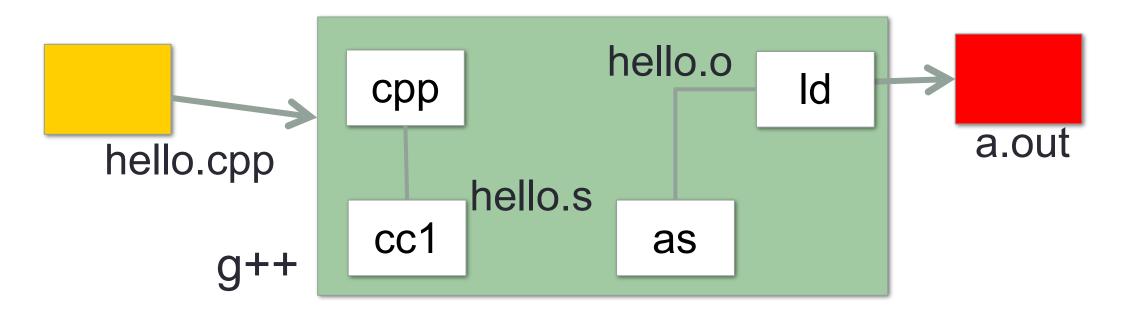
The compilation process


Source code:

Text file stored on computers hard disk or some secondary storage

+Data in binary

g++ is composed of a number of smaller programs


- Code written by others (libraries) can be included
- Id (linkage editor) merges one or more object files with the relevant libraries to produce a single executable

Steps in gcc

Ask compiler to show temporary files:

```
$ g++ -S hello.cpp
$ g++ -c hello.o (should say hello.cpp here)
$ g++ -o hello hello.cpp
$ g++ functions.o main.o -o myhello
```

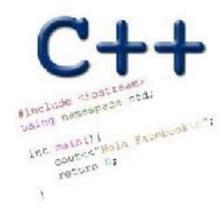

Make and makefiles

- The unix make program automates the compilation process as specified in a Makefile
- Specifies how the different pieces of a program in different files fit together to make a complete program
- In the makefile you provide a recipe for compilation
- When you run make it will use that recipe to compile the program

```
$ make
g++ testShapes.o shapes.o tdd.o -o testShapes
```

Demo

- Basics of code compilation in C++ (review)
- Makefiles (used to automate compilation of medium to large projects) consisting of many files
- We will start by using a makefile to compile just a single program
- Extend to the case where your program is split between multiple files
- Understand what each of the following are and how they are used in program compilation
 - Header file (.h)
 - Source file (.cpp)
 - Object file (.o)
 - Executable
 - Makefile
 - Compile-time errors
 - Link-time errors


Specifying a recipe in the makefile

- Comments start with a #
- **Definitions** typically are a variable in all caps followed by an equals sign and a string, such as:

```
CXX=g++
CXXFLAGS=-Wall
BINARIES=proj1
```

NUMBER CONVERSION

Problem Solving with Computers-I

External vs. Internal Representation

- External representation:
 - Convenient for programmer
 - Decimal (base 10)

- Internal representation:
 - Actual representation of data in the computer's memory: Always binary (1's and 0's)

Positional encoding for non-negative numbers

Each position represents some power of the base

Binary representation (base 2)

- On a computer all data is stored in binary
- Only two symbols: 0 and 1
- Each position is called a bit
- Bits take up space
- 8 bits make a byte
- Example of a 4-bit number

- Actually the data is voltages
- We use the abstraction:
 - High voltage: 1 (true)
 - Low voltage: 0 (false)

$101_5 = ? In decimal$

- $\left(A\right)26$
 - B. 51
 - C. 126
 - D. 130

Converting between binary and decimal

Binary to decimal: 1 0 1 1 $0_2 = ?_{10}$

Decimal to binary: 34₁₀=?₂

Hex to binary

- Each hex digit corresponds directly to four binary digits
- Programmers love hex, why?

$$25B_{16} = ? In$$

binary

```
00
        0000
01
        0001
        0010
        0011
        0100
05
        0101
06
        0110
        0111
        1000
09
        1001
        1010
        1011
        1100
        1101
        1110
```

Hexadecimal to decimal

25B₁₆ = ? Decimal

Hexadecimal to decimal

Use polynomial expansion

•
$$25B_{16} = 2*256 + 5*16 + 11*1 = 512 + 80 + 11$$

= 603

• Decimal to hex: $36_{10} = ?_{16}$

Binary to hex: 1000111100

A. 8F0

C. None of the above

Numbers Binary Code

0

1

2

3

How many (minimum) bits are required to represent the numbers 0 to 3?

Colors

Binary code

How many (minimum) bits are required to represent the three colors?

Characters

- 'a'
- 'b'
- **'C'**
- 'd'
- 'e'

N bits can represent at most 2^N things

What is the minimum number of bits required to represent all the letters in the English alphabet in lower case?

A. 3

B. 4

(C) 5

D. 6

E. 26

- Logical values?
 - $0 \Rightarrow \text{False}$, $1 \Rightarrow \text{True}$
- colors?
- Characters?
 - 26 letters \Rightarrow 5 bits (2⁵ = 32)
 - upper/lower case + punctuation
 ⇒ 7 bits (in 8) ("ASCII")
 - standard code to cover all the world's languages ⇒ 8,16,32 bits ("Unicode")

 www.unicode.com
- locations / addresses? commands?

MEMORIZE: N bits ⇔ at most 2^N things

What is the maximum positive value that can be stored in a byte?

A. 127

B. 128

 $\left(\begin{array}{c} C \end{array}\right)$ 255

D. 256

Data types

Binary numbers in memory are stored using a finite, fixed number of bits typically:

```
8 bits (byte)16 bits (half word)32 bits (word)64 bits (double word or quad)
```

Data type of a variable determines the:

- exact representation of variable in memory
- number of bits used (fixed and finite)
 - range of values that can be correctly represented