
Problem Solving with Computers-I 6

10

40

12

32 4743

45 41

a.k.a.,		CS's	version	of	mathematical	induction

As close as CS gets to magic

Let recursion draw you in….
• Recursion occurs when something is described in terms of itself

Recursive names

GNU is NOT Unix

Visual representations of recursion

Fractals

Sierpinski triangle

Koch’s snowflake

Recursion: A way of solving problems in CS
• Solve the simplest case of the problem
• Solve the general case by describing the problem in terms of a

smaller version of itself

An everyday example:
To wash the dishes in the sink:

If there are no more dishes

you are done!

else:

Wash the dish on top of the stack

Wash the remaining dishes in the sink

Thinking recursively

N! = N * (N-1)! , if N > 1
= 1, if N <= 1

Recursion == self-reference!

int fac(int N){
if(N <= 1){

return 1;
}

}

Designing Recursive Functions
Base	case:

Solution	to	inputs	where	
the	answer	is	simple	to	

solve

(top	of	the	pyramid)

Base case: N <= 1

General case: N>1
The	pyramid	of		computation	

for	recursive	problems

int fac(int N){
if(N <= 1){

return 1;
}else{

double rest= fac(N-1);
return N* rest;

}

}

Designing Recursive Functions

Base	case

General case
The	pyramid	of		computation	

for	recursive	problems

Recursive	case

Human: Base	case	and	1	step Computer: Everything	else

Warning: this is legal!

int fac(int N){
return N* fac(N-1);

}

No base case -- the calls to fac will never stop!

Make	sure	you	have	a	
base	case,	thenworry	
about	the	recursion...

legal != recommended

int fac(int N){
return N* fac(N-1);

}

Print the numbers 1 to N recursively
void printInorder(int N){

//Base case
}

Select the appropriate base case:
A. cout<<N<<endl;
B. if (N == 1){

cout<<N<<endl;
}

C. if (N <= 1){
return;

}
D. All of the above are correct

Print the numbers 1 to N recursively
void printInorder(int N){

//Base case

_________________(A)
printInorder(N-1);
_________________(B)

}
Choose the correct location of this statement:
cout<<N<<endl;

A new way of looking at inputs

Arrays:

• Non-recursive description: a sequence of elements

• Recursive description: an element, followed by a smaller array

Print all the elements of an array in order
void printArray(int arr[], int len){

if(len <=0) return;
cout<<arr[0]<<endl;
printArray(______, ______);

}
Select the arguments to the call to printArray:
A. (arr, len)
B. (arr - 1, len – 1)
C. (arr + 1, len – 1)
D. (arr + 1, len)
E. (arr – 1, len)

Recursive description of a linked list

50 20 4010

head

• Non-recursive description of the linked list: chain of nodes

• Recursive description of a linked-list: a node, followed by a smaller
linked list

Recursion to solve problems involving linked-lists

50 20 4010

head

• Recursive description of a linked-list: a node, followed by a smaller
linked list

1. Write a recursive function to return the sum of the values stored
in a linked list

2. Share your code with the person sitting next to you and discuss

Small group activity (10 minutes)

What’s in a base case?

50 20 4010

head

double sumList(Node* head){

double sum = head->value + sumList(head->next);
return sum;

}

What happens when we execute this code on the
example linked list?
A. Returns the correct sum (120)
B. Program crashes with a segmentation fault
C. Program runs forever
D. None of the above

Examples of recursive code

4050 2010

head

double sumList(Node* head){
if(!head) return 0;
double sum = head->value + sumList(head->next);
return sum;
}

Find the min element in a linked list

double min(Node* head){
// Assume the linked list has at least one node
assert(head);
// Solve the smallest version of the problem

}

Helper functions
• Sometimes your functions takes an input that is not easy to recurse on
• In that case define a new function with appropriate parameters: This is

your helper function
• Call the helper function to perform the recursion

For example
double sumLinkedLisr(LinkedList* list){

return sumList(list->head); //sumList is the helper
//function that performs the recursion.

}

Next time
• More practice with recursion
• Final practice

