C++ MEMORY MODEL
DYNAMIC MEMORY
HEAP VS STACK

Problem Solving with Computers-| ++
(: 3 GitHub
‘u i:fnl: “il‘mej.r:ac" o 5 @

/1|

Announcements

Please fill out the mid-quarter evaluations for:

(1) TAs: http://bit.ly/CS16-Midquarter-TA-Evaluation

(2) Course and instructor:
http://bit.ly/CS16-Midquarter-Instructor-and-Course-Evaluation

Link to both is posted on Piazza!

http://bit.ly/CS16-Midquarter-TA-Evaluation
http://bit.ly/CS16-Midquarter-Instructor-and-Course-Evaluation

The case of the disappearing data!

int getInt(){ What is the output?
int x=5;

\ return Xx; A. 5, O, 10

int* getAddressOfInt(){ B. 5,10, 10
int x=10; C. Something else

return &x;

¥

int main(){
int y=0, *p=nullptr, z=0;

y = getInt();
p = getAddressOfInt();
Z = *p;

cout<<y<<”, "<<z<<", "<<*p<<endl;

C++ Memory Model: Stack
Address 0x00000000

» Stack: Segment of memory

managed automatically using a Text (R/0O)
Last in First Out (LIFO) principle
* Think of 1t like a stack of books! Global Data
Heap
Stack

¢ Address OxFFFFFFFF

C++ Memory Model: Heap
Address 0x00000000

* Heap: Segment of memory

managed by the programmer Text (R/O)
« Data created on the heap stays
there Global Data
— FOREVER or H eq p
— until the programmer explicitly
deletes 1t
Stack

¢ Address OxFFFFFFFF

Creating data on the Heap: new

To allocate memory on the heap use the new operator

¢ Address OxFFFFFFFF

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

¢ Address OxFFFFFFFF

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the heap

Student* n = new Student;

//creates a new Student on the heap

delete p; //Frees the integer
delete n; //Frees the Student

Solve the case of the disappearing data!

int getInt(){ Change the code so that *p
Nt X=5; does not disappear
return Xx;
} .
int* getAddressOfInt(){ Desired output:
int x=10; 5,10, 10
return &x;
}

int main(){
int y=0, *p=nullptr, z=0;

y = getInt();
p = getAddressOfInt();
Z = *p;

cout<<y<<”, "<<z<<", "<<*p<<endl;

L
Heap vs. stack

1 #include <iostream>
2 using namespace std;

3
4 intx createAnIntArray(int len){

int arr[len];
return arr;

O 00 Jd O Un

}

Does the above function correctly return an array of integers?

A. Yes
B. No

Where are we going? Data Structures!

15

20

30

Arrays

1]

Trees

Link list

Spanning tree

=

Hashing

Where are we going? Data structures!!

Address 0x00000000
15 20 | 30 Arrays
Text (R/0)
It all
’ﬁw boils
moim ;n! down to Global Data
o | . I'sand O's
o Heap
Link list list spanning tree
Hashing
Stack
(CS24/32)

Address OxFFFFFFFF

Linked Lists

The Drawing Of List {1, 2, 3}

Stack

head |_ 0

A “head” pointer local to
BuildOneTwoThree() keeps
the whole list by storing a
pointer to the first node.

,) ; Array List
Heap

The overall list is built by connecting the

nodes together by their next pointers. The

nodes are all allocated in the heap. - !

d Linked List
S B E ;_

Each node Each node stores The next field of
stores one one next pointer. the last node is
data element NULL.

(int 1n this
example).

Accessing elements of a linked list

head—>< 1 9_><2

struct Node {
int data;
Node *next;

Y-

Assume the linked list has already been created, what do the following
expressions evaluate to?

1.

2. head
3.
4. head

head

head

->data
->next->data

->next->next->data

->next->next->next->data

A. 1

B. 2

C.3

D. NULL

E. Run time error

Create a small list — use only the stack

* Define an empty list struct Node {

int data;

 Add a node to the list with data = 10 Node *next:

s

Heap vs. stack

Nodex createSmallLinkedList(int x, int y){

Nodex head = NULL;
Node nl1l ={x, NULL};
Node n2 ={y, NULL};
head = &nl;
nl->next = &n2;
return head;

}

Does the above function correctly create a two-node linked list?
A. Yes

B. No

Pointer pitfalls and memory errors

* Segmentation faults: Program crashes because it attempted to

access a memory location that either doesn’t exist or doesn’t have
permission to access

« Examples of code that results in undefined behavior and potential
segmentation fault

int arr[] = {50, 60, 70}; int x = 10;
=)

int* p;

for(int i=0; i<=3; i++){ cout<<*p<<endl;
J

cout<<arr[i]<<endl;

¥

Dynamic memory pitfalls

Dangling pointer: Pointer points to a memory location that no longer exists

Which of the following functions returns a dangling pointer?

int* f1(int num){
int* meml =new int[num];
return(meml);

}
A. f1
int* f2(int num){ B. f2
int mem2[num]; C. Both
return(mem2); D. Neither
\ .

Dynamic memory pitfalls

Memory leaks (tardy free):
Heap memory not deallocated before the end of program
Heap memory that can no longer be accessed

Example

void foo(){
intx p = new 1int;

Next time

- More Linked Lists

