
C++ MEMORY MODEL
DYNAMIC MEMORY
HEAP VS STACK

Problem Solving with Computers-I

Announcements
Please fill out the mid-quarter evaluations for:

(1) TAs: http://bit.ly/CS16-Midquarter-TA-Evaluation

(2) Course and instructor:
http://bit.ly/CS16-Midquarter-Instructor-and-Course-Evaluation

Link to both is posted on Piazza!

http://bit.ly/CS16-Midquarter-TA-Evaluation
http://bit.ly/CS16-Midquarter-Instructor-and-Course-Evaluation

The case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){

int y=0, *p=nullptr, z=0;
y = getInt();
p = getAddressOfInt();
z = *p;

cout<<y<<", "<<z<<", "<<*p<<endl;
}

What is the output?

A. 5, 0, 10
B. 5, 10, 10
C. Something else

C++ Memory Model: Stack
• Stack: Segment of memory

managed automatically using a
Last in First Out (LIFO) principle

• Think of it like a stack of books!

C++ Memory Model: Heap
• Heap: Segment of memory

managed by the programmer

• Data created on the heap stays
there

– FOREVER or

– until the programmer explicitly
deletes it

Creating data on the Heap: new

To allocate memory on the heap use the new operator

Deleting data on the Heap: delete

To free memory on the heap use the delete operator

Dynamic memory management = Managing data on the heap

int* p= new int; //creates a new integer on the heap

Student* n = new Student;

//creates a new Student on the heap

delete p; //Frees the integer

delete n; //Frees the Student

Solve the case of the disappearing data!
int getInt(){

int x=5;
return x;

}
int* getAddressOfInt(){

int x=10;
return &x;

}
int main(){

int y=0, *p=nullptr, z=0;
y = getInt();
p = getAddressOfInt();
z = *p;
cout<<y<<", "<<z<<", "<<*p<<endl;

}

Change the code so that *p
does not disappear

Desired output:
5, 10, 10

Heap vs. stack
1 #include <iostream>
2 using namespace std;
3
4 int* createAnIntArray(int len){
5
6 int arr[len];
7 return arr;
8
9 }

Does the above function correctly return an array of integers?
A. Yes
B. No

Where are we going? Data Structures!

Arrays

15 20 30

Where are we going? Data structures!!

(CS24/32)

15 20 30 Arrays

It all
boils
down to
1’s and 0’s

Linked Lists
13

Linked List

Array List1 2 3

Accessing elements of a linked list

Assume the linked list has already been created, what do the following
expressions evaluate to?
1. head->data
2. head->next->data
3. head->next->next->data
4. head->next->next->next->data

A. 1
B. 2
C. 3
D. NULL
E. Run time error

head

struct Node {
int data;
Node *next;

};

Create a small list – use only the stack
15

• Define an empty list

• Add a node to the list with data = 10

struct Node {
int data;
Node *next;

};

Heap vs. stack

Node* createSmallLinkedList(int x, int y){

Node* head = NULL;
Node n1 ={x, NULL};
Node n2 ={y, NULL};
head = &n1;
n1->next = &n2;
return head;

}

Does the above function correctly create a two-node linked list?
A. Yes
B. No

Pointer pitfalls and memory errors
• Segmentation faults: Program crashes because it attempted to

access a memory location that either doesn’t exist or doesn’t have
permission to access

• Examples of code that results in undefined behavior and potential
segmentation fault

int arr[] = {50, 60, 70};

for(int i=0; i<=3; i++){
cout<<arr[i]<<endl;

}

int x = 10;
int* p;
cout<<*p<<endl;

Dynamic memory pitfalls

Dangling pointer: Pointer points to a memory location that no longer exists

int* f1(int num){
int* mem1 =new int[num];
return(mem1);

}

A. f1
B. f2
C. Both
D. Neither

int* f2(int num){
int mem2[num];
return(mem2);

}

Which of the following functions returns a dangling pointer?

Dynamic memory pitfalls

Example

void foo(){
int* p = new int;

}

Memory leaks (tardy free):
Heap memory not deallocated before the end of program
Heap memory that can no longer be accessed

Next time
• More Linked Lists

