
 
 
REFERENCES, POINTERS 
PASSING PARAMETERS TO FUNCTIONS 

Problem Solving with Computers-I

a

Announcements
• H05 and H06 are released. (pdf versions available on website)
• Please submit a pdf version of your answers to the assignment on gradescope

before the due date
• Print, write by hand, scan, upload
• Download, annotate, upload
• Use Word (or some other text editor to write the answers only), convert to

pdf and upload.

�3

p
112

y
3

100 112

Pointer Diagrams:
Diagrams that show the relationship between pointers and pointees

Pointer: p Pointee: y

p points to y

Tracing code involving pointers

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�4

int *p;
int x = 10;
p = &x;
*p = *p + 1;

A.
 10x

B.
x

C. Neither, the code is incorrect

 11

p p

H

B Dgp

O

Pointer assignment

Q: Which of the following pointer diagrams best represents the outcome of the above code?

�5

int *p1, *p2, x;
p1 = &x;
p2 = p1;

A.

x
B.

x

C. Neither, the code is incorrect

p1

p2

p1 p2

fi p intm.psu

O
intoplasp3xi
pleadp2z pl

32 points topl

▪ ar is like a pointer to the first element

▪ ar[0] is the same as *ar

▪ ar[2] is the same as *(ar+2)

ar

 100 104 108 112 116

20 30 50 80 90

▪ Use pointers to pass arrays in functions
▪ Use pointer arithmetic to access arrays more conveniently

Arrays and pointers
I

arco art 2

Add
The size 82dat ints to ar

O I 2 3 Y

Pointer
arithmetic

F Address of
elemental

index

2

O

What is the output of the code?

A. Mark Jill

B. Mark Mark

C. Art Mark

D. Compiler error

E. Run-time error

char s1[] = "Mark";
char s2[] = "Jill";
for (int i = 0; i <= 4; i++)
 s2[i] = s1[i];
if (s1 == s2) s1 = "Art";
cout<<s1<<" "<<s2<<endl;

0 1001

si
k

0 I 2 3 4
0 8000

52 fMT
0 I 23 Y

Tcompiler eesor
cus it bate

addressofarray cannot change the
base

are equal address ofthe away

void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 cout<<a<<" "<<b<<endl;
 swapValue(a, b);
 cout<<a<<" "<<b<<endl;

}

Pass by value
What is printed by
this code?
A.

30 40

30 40

B.

30 40

40 30

C. Something else

swap Value0 x Tod
X y are copies

Do bf
Local var

40 30 Fain

g a

Void swap Value intern integD

int temp a x f t

x z y ney are

y twp PREFERENCES

int main C 3 nice names

Mf az 30 b 401 for other variak

swap Valin
Ca bl

y passby referene tmp

b
a

main Tob
X y

notice the difference
between

the memory diagram
on

this page
compared

to

the previous page
where

variables were passed byValley

References in C++

int main() {
 int d = 5;
 int &e = d;
}

A reference in C++ is an alias for
another variable

!9

7

eisa dgg5 Dao
reference Hd E int x

d 10 2 4
e 20 Kjcourted

References in C++

int main() {
 int d = 5;
 int &e = d;
 int f = 10;
 e = f;

}

How does the diagram change with this code?

C. 10

10
d:
e:

10f:

A. B.
5

10

D. Other or error

!10

d:
e:
f:

d:
e:
f:

could d

O

Passing parameters by reference

void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

} UO 30

Passing parameters by address

void swapValue(int x, int y){
 int tmp = x;
 x = y;
 y = tmp;
}
int main() {

 int a=30, b=40;

 swapValue(a, b);

 cout<<a<<" "<<b<<endl;

}

p y
a D D

Imp f bPo aff
b

o

Passbyaddress the address of
a b

are copied intopointers
X and y

Pointer Arithmetic
▪ What if we have an array of large structs (objects)?
▪C++ takes care of it: In reality, ptr+1 doesn’t add 1 to the

memory address, but rather adds the size of the array
element.
▪C++ knows the size of the thing a pointer points to – every

addition or subtraction moves that many bytes: 1 byte for a
char, 4 bytes for an int, etc.

Pointer Arithmetic

int *p;
p = arr;
p = p + 1;
*p = *p + 1;

Draw the array ar after the above code is executed

int ar[]={20, 30, 50, 80, 90};

100 104 108

Pointer Arithmetic

How many of the following are invalid?
I. pointer + integer (ptr+1)
II. integer + pointer (1+ptr)
III. pointer + pointer (ptr + ptr)
IV. pointer – integer (ptr – 1)
V. integer – pointer (1 – ptr)
VI. pointer – pointer (ptr – ptr)
VII. compare pointer to pointer (ptr == ptr)
VIII. compare pointer to integer (1 == ptr)
IX. compare pointer to 0 (ptr == 0)
X. compare pointer to NULL (ptr == NULL)

#invalid
 A: 1
 B: 2
 C: 3
 D: 4
 E: 5

int ar[]={20, 30, 50, 80, 90};

100 104 08
0 I 2 3 Y

pH pin I

x

int a = 5;
int &b = a;
int *pt1 = &a;

What are three ways
to change the value of
‘a’ to 42?

!16

Pointers and references: Draw the diagram for this code

Which of the following is true after IncrementPtr(q)is called
in the above code:

void IncrementPtr(int *p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(q);

A. ‘q’ points to the next element in the array with value 60
B. ‘q’ points to the first element in the array with value 50

How should we implement IncrementPtr(),so that ‘q’ points to 60
when the following code executes?
void IncrementPtr(int **p){
 p++;
}

50 60 70
arr

qint arr[3] = {50, 60, 70};
int *q = arr;
IncrementPtr(&q);

A. p = p + 1;
B. &p = &p + 1;
C. *p= *p + 1;
D. p= &p+1;

Pointer pitfalls
• Dereferencing a pointer that does not point to anything results in

undefined behavior.

• On most occasions your program will crash

• Segmentation faults: Program crashes because code tried to access
memory location that either doesn’t exist or you don’t have access to

Two important facts about Pointers
�20

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;
 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR
➢allocate room in memory for something new that it will point to

Two important facts about Pointers
!21

1) A pointer can only point to one type –(basic or derived) such as int,
char, a struct, another pointer, etc

2) After declaring a pointer: int *ptr;

 ptr doesn’t actually point to anything yet.
 We can either:

➢make it point to something that already exists, OR

➢allocate room in memory for something new that it will point to

➢Null check before dereferencing

Next time
• Structs
• Arrays of structs

